1,733 research outputs found

    Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance

    Full text link
    We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Moreover, differently from methods based on moving horizon estimation, our approach does not require the on-line solution to optimization problems. Our state-estimation scheme, that is based on the notion of practical robust positive invariance developed in Rakovic 2011, also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed

    Resonant Transport in Nb/GaAs/AlGaAs/GaAs Microstructures

    Get PDF
    Resonant transport in a hybrid semiconductor-superconductor microstructure grown by MBE on GaAs is presented. This structure experimentally realizes the prototype system originally proposed by de Gennes and Saint-James in 1963 in \emph{all}-metal structures. A low temperature single peak superimposed to the characteristic Andreev-dominated subgap conductance represents the mark of such resonant behavior. Random matrix theory of quantum transport was employed in order to analyze the observed magnetotransport properties and ballistic effects were included by directly solving the Bogoliubov-de Gennes equations.Comment: 7 pages REVTeX, 4 figures, to be published by World Scientific in Proceedings of International Symposium on Mesoscopic Superconductivity and Spintronics (NTT R&D Center Atsugi, Japan, March 2002

    Early predictive response to multi-tyrosine kinase inhibitors in advanced refractory radioactive-iodine differentiated thyroid cancer: A new challenge for [18 f]fdg pet/ct

    Get PDF
    Differentiated thyroid cancer (DTC) represents the most common thyroid cancer histotype. Generally, it exhibits a good prognosis after conventional treatments; nevertheless, about 20% of patients can develop a local recurrence and/or distant metastasis. In one-third of advanced DTC, the metastatic lesions lose the ability to take up iodine and become radioactive iodine-refractory (RAI-R) DTC. In this set of patients, the possibility to perform localized treatments should always be taken into consideration before the initiation of systemic therapy. In the last decade, some multi-tyrosine kinase inhibitor (MKI) drugs were approved for advanced DTC, impacting on patient’s survival rate, but at the same time, these therapies have been associated with several adverse events. In this clinical context, the role of 2-deoxy-2-[18 F]fluoro-D-glucose positron emission tomography/computed tomography ([18 F]FDG PET/CT) in the early treatment response to these innovative therapies was investigated, in order to assess the potentiality of this diagnostic tool in the early recognition of non-responders, avoiding unnecessary therapy. Herein, we aimed to present a critical overview about the reliability of [18 F]FDG PET/CT in the early predictive response to MKIs in advanced differentiated thyroid cancer

    Seismic retrofit of reinforced concrete frames by direct loss-based design

    Get PDF
    This paper introduces a procedure for the retrofit design of reinforced concrete (RC) frame buildings to achieve the desired target level of earthquake-induced loss for a given seismic hazard profile. The methodology is "direct" because the loss target is specified in the first step of the procedure, and, in principle, no design iterations are required. The target loss level is defined based on designer/client preferences and/or external constraints (e.g., foundation capacity). The proposed procedure relies on a simplified loss assessment enabled by a surrogate model defining the probability distribution of the seismic deformation demands of single degree of freedom (SDoF) systems given different ground-motion intensity levels. Combined with a hazard curve and a building-level damage-to-loss model, such a surrogate model is used to map candidate SDoF force-displacement curves to their earthquake-induced loss by assuming a given retrofit strategy. In this case, the considered retrofit strategy involves changing the frame's local hierarchy of strength to ensure a global plastic structure mechanism. Under such assumptions, a designer can select a design force-displacement curve among those that comply with the chosen loss target. The detailing of the retrofitted frame is carried out according to the direct displacement-based design principles and the Simplified Lateral Mechanism Analysis (SLaMA). The procedure is applied to an under-designed RC frame building retrofitted with concrete jacketing. A benchmark loss estimate is calculated using non-linear time-history analyses for loss assessment purposes. The proposed procedure shows satisfactory compliance with the benchmark loss, emphasising the procedure's effectiveness in practice

    Gaussian process regression-based surrogate modelling for direct loss-based seismic design of low-rise base-isolated structures

    Get PDF
    Seismic base isolation has gained popularity in the last decades. As a result, many structures are now equipped with base isolation systems to offer enhanced seismic performance and meet the needs of risk-aware stakeholders. However, a robust performance-based seismic design of these types of structures is generally not carried out due to the iterative nature of common design approaches and the time/computational resources required for such iterations, which are incompatible with the preliminary design phase. Indeed, seismic risk/loss is often just assessed at the end of the design process as a final verification step. This paper offers an overview of a simplified methodology for the seismic design of low-rise structures equipped with a base isolation system to achieve a predefined level of earthquake-induced economic loss while complying with a predefined minimum level of structural reliability. The main advantage of the proposed methodology is that it requires no design iterations. The procedure is enabled by Gaussian-process-regression-based surrogate probabilistic seismic demand modelling of equivalent single degree of freedom systems (i.e., the probability distribution of peak horizontal displacements and accelerations on top of the isolation layer conditional on different ground-motion intensity levels). Combined with simplified loss models for the base isolation system and the structural and non-structural components of the superstructure, this approach allows mapping a range of structural configurations to their resulting seismic loss. A designer can then select one of the identified combinations of the strength of the superstructure and properties of the isolation system conforming with the loss target, and reliability requirements, and consequently detail the superstructure and isolation system accordingly. This paper introduces the implemented surrogate probabilistic seismic demand models and provides an overview of a tentative Direct Loss-based Design procedure for low-rise base-isolated structures

    The Mn site in Mn-doped Ga-As nanowires: an EXAFS study

    Full text link
    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched Mn-As coordination we have found the presence of Mn in a Mn-Au intermetallic compound.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Semiconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at doi:10.1088/0268-1242/27/8/08500

    Identify Scientific Literacy From the Science Teachers' Perspective

    Full text link
    Scientific literacy is considered as a benchmark of high and low quality of science education in a country. This study aims to identify the scientific literacy of teachers and learning science relation to the issues from the perspective of a science teacher. This descriptive study involved 25 science teachers who are members of MGMP IPA in Bogor. The instrument used in this study consisted of scientific literacy tests and interviews. The results showed that 20% of teachers have scientific literacy ability in the low category, 65% in the moderate category and 15% in the high category. The problems of teaching science based on teacher perspective are 1. having difficulty to teach Integrated Science; 2. having limited knowledge related to learning models of Integrated Science; 3. lack of motivation in teaching integrated science consistently. The results of these studies form the basis that the professional trainings for junior high science teacher need to be conducted in a sustainable manner and related with the needs of their proficiency
    • …
    corecore